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Diffusion-Controlled Reactions among 
Stationary Sinks 

Robert  I. Cukier  I 

We summarize results of some of our calculations in diffusion-controlled reac- 
tion theory. We derive the transport equation describing a diffusing species 
which can react with a set of randomly distributed spherical sinks. Both the 
form of the transport equation and the dependence on sink volume fraction of 
the reaction rate and the effective diffusion coefficient are discussed. 
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1. INTRODUCTION 

The theory of diffusion-controlled reactions was developed by Smo- 
luchowski3 o He showed that the flux into a molecule A in a fluid with a 
diffusing species which reacted on contact with the surface of A is given by 
k D = 4~rDoa. Here D O is the diffusion coefficient in the fluid and a is the A 
radius. For sufficiently low A concentration c = M / [ 2  (M A's in volume f~) 
kf  = ck  D . As c increases, the reactive fluid density field about a given A is 
influenced by the other A's; thus the rate kf ~: ck  D. Furthermore, the 
presence of the A's modifies the diffusion coefficient. 

In this article we summarize some of our efforts toward extending 
Smoluchowski's work to the higher concentration regime. Thus, consider a 
simple model consisting of fluid, particles, and spherical sinks. The sinks 
are much larger than the particles and distributed as dilute hard spheres, 
uniformly, but without overlap. The fluid carries the reactive particles by 
Fickian diffusion and the particles are instantaneously absorbed on contact 
with the stationary sinks. We anticipate the transport equation 

( O / 3 t ) N ( r ,  t) = D V2N(r, t) - k fN( r ,  t) (1) 

Presented at the Symposium on Random Walks, Gaithersburg, MD, June 1982. 
Supported in part by the National Science Foundation under Grant No. CHE-78-07849. 
1 Department of Chemistry, Michigan State University, E. Lansing, Michigan 48824-1322. 

3113 
0o22-4715/83/02o0-0383503.00/0 �9 1983 Plenum Publishing Corporation 



384 Cukier 

in terms of the sphere configuration averaged particle density N(r,t), 
effective diffusion coefficient D, and rate coefficient kf. For spherical sinks 
both D and kf are functions of the sink volume fraction ~ = 47ra3c/3. 

The issue of calculating the ~, dependence of kf and D has been 
addressed by several authors. (2-5) However, more fundamental issues also 
arise36) To introduce them we formally express the reaction-diffusion 
system by a Langevin-like equation (after Laplace time transformation): 

(z - DoV2)n(r,z) = - f dr'Y,(r,, ' ,z)n(r',z) + R(r,z)  + No(r ) (2) 

Here n(r, z) is the sphere configuration-dependent coarse-grained particle 
density 

= dkn(k , z )  (3) n(r,z) (27r)-3~<1/b 

with b >> a and N0(r ) the (configuration-independent) initial condition. The 
memory function Z(r, r', z) and random "force" R(r,z) are given by multi- 
ple scattering expansions in terms of the sphere-free fluid propagator 
G o = exp(-ar)/4~rDor with a = (z/Do) 1/2 and sphere scattering functions 
T~ (i = 1,2 . . . .  , M). The {T i} incorporate the exact scattering power of 
each sink for arbitrary sink geometry, though they can be explicitly 
evaluated only for simple geometries. {3) R satisfies ( R ) =  0 where the 
bracket denotes the sphere configuration average. (Y. and R are related in a 
different fashion than by the conventional fluctuation-dissipation theorem 
of the second kind since here the fluctuations are generated by the random 
sink distribution.) Now separate the particle density according to n(r, t) 
= N(r , t )+ 8n(r,t), [N(r , t )= (n)(r,t)], with N the deterministic motion 
and 8n the fluctuating motion. Then N (Sn) satisfies Eq. (2) without (with) 
the random "force" term. 

The following questions arise in the attempted passage from Eq. (2) to 
Eq. (1). 

1. Is there a spatial gradient expansion of g which allows the space 
local representation of Eq. (1)? 

2. Is there a time scale expansion of s which leads to the time local 
form of Eq. (1)? 

3. With regard to the fluctuations, what are the statistical properties 
of R and what do they imply about 8n? Are they small, and Gaussian? If 
so, then the N equation represents the macroscopic behavior but if not, 
how do the fluctuations modify the description of the transport? 

4. How can the ~ dependence of kf and D be systematically calcu- 
lated for moderate values of qa and reasonably approximated for large 
values of q~ (~ approaching random close packed)? Note that k /and  D are 
potentially measurable independently of the transport equation so that 
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these are physical parameters even if Eq. (1) does not fully characterize the 
transport. 

In Section 2 we discuss a rigorous method that can address the issues 
just raised. It is a perturbative method and as such is not a practical 
technique for calculating k I and D at high sphere concentration. Thus, in 
Section 3 we turn to approximate nonperturbative methods which are 
directed to the higher concentration regime. 

2. S C A L I N G  E X P A N S I O N S  

We have recently (6) adapted a scaling expansion method advanced by 
Mori (7) to this reaction-diffusion problem. The philosophy is as follows. 
Three kinds of expansions are conventionally used to obtain macroscopic 
transport equations from microscopic equations: expansions in density 
(here sink concentration c), in spatial gradients V, and in "slowness" 
parameter zO/Ot ) .  Mori points out that they are related and that the 
expansion must be carried out consistently. This is accomplished by a 
scaling expansion method in which asymptotic limits of the macroscopic 
parameters are taken to effect a space-time coarse graining and by so doing 
to extract the macroscopic description from the microscopic details. 

The basic scaling for the reaction-diffusion system is obtained from 
the low-concentration (independent sphere) deterministic equation 

~ U / ~ t  = DoV2N- kDcU (4) 

Since k D = 4~rDoa, the length l and time �9 scales are ~-1 = l = 1/(4~rac) 1/2 
and "r = 12/Do . Since l >> b >> a we introduce a scaling l---> Sl, a---> a with 
S >> 1 and all molecular quantities such as D o are kept fixed. The notation 
introduced above lets us indicate how lengths, time, etc. become large. The 
space-time coarse graining is then produced by the scaling r--> Sr, t ~ S~  

S - ~  for distances It[ >/b where 0 is a positive exponent to be deter- 
mined. Then, this scaling leads to (xa)--> S -  l(xa), cO---> S-2q~, M--> Sd -2M,  
f~ ---> S~f~ where d (dimensionality) = 3 here. The three kinds of expansions 
are then expressed by the scaling c ~ S - 2 c ,  7 - - > S - ~ V ,  z - ->S-2z .  Thus, 
the expansion in S -1 enables us to carry out the space-time coarse 
graining, which leads to the macroscopic equation, in a manner consistent 
with the sphere concentration expansion! This is in contrast to a conven- 
tional small parameter expansion. 

The spatial coarse graining divides the system volume ~2 into cells of 
volume b d and eliminates intracellular degrees of freedom. The concentra- 
tion c goes to zero as S increases but the number of sinks in a cell, cb d, is 
proportional to S (d-2). Thus for d = 3 each cell has many sinks and we 
expect that the fluctuations 6n will be small and Gaussian. Clearly, the 
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dimensionality plays a crucial role and we shall discuss this important 
aspect of the formalism shortly. 

Define scaling exponents a and fl by N ( r , z ) o N S ( S r ,  S -~  
= S-~N(r,z) and 8n(r,z)oSnS(Sr,  S-~ = S-~Sn(r,z) and scale in- 
variants N and 8rr by N ( r , z ) = b - ~ N ( r / b , b ~  and 8n(r,z)= 
b-~Sn(r/b, b ~ rb). The former statements indicate how the deterministic 
and fluctuating quantities depend on S; the latter note that the macro- 
scopic equations must be invariant under the given scaling. Introduction of 
the exponents a and fl enable us to precisely specify the relative sizes of N 
and 8n. 

Scaling the Langevin equation and analyzing the scaled forms of E 
and R, expressed in their multiple scattering representations, leads to the 
following observations. 

1. All terms in the diagrammatic expansion of ~ can be systemati- 
cally ordered in S -  1. In this screened problem there are terms which are 
divergent to varying degrees and conventionally one sums the integrands of 
the most divergent diagrams to all orders in c to obtain a convergent result. 
Scaling assigns the same order to every most divergent diagram and thus 
provides an objective ordering of these, as well as all less divergent and 
nondivergent, diagrams. 

2. The memory function Z, and this is a crucial result, is exactly 
decomposable as Z = Y~L(r/a, zl 2) + Zu(r/ l ,  zl2). Since N = N(r/ l ,  zl2), 
S L can be expanded in gradients to yield k/(72) ~ D(V2) 1 and Burnett (72) 2 
etc. coefficients. But Z~v cannot be expanded. Its space variation is on the 
same scale as that of N--the macroscopic process is space nonlocal. 

3. Summing diagrams can only be carried out to low order (in S -  i): 
we have summed to order S-2 and find that the resulting space-nonlocal 
macroscopic equation is local in time to this order. The screening, which 
arises from the reaction, dominates the frequency dependence of the 
renormalized propagator (see 4). 

4. Diagrammatic resummations were carried out to rigorously intro- 
duce the renormalized propagator G(r, z) = exp[ - (x 2 + z/Do)l/Zr]/4~rDo r. 
This propagator eliminates the zero-frequency divergences occurring in the 
bare propagator expansion. 

5. The diagrammatic analysis of ~; shows that there are three (to the 
order of the calculation, S-2) classes of interactions: (a) long-range (ring 
and various iterated rings) which sum to a renormalized propagator expan- 
sion and are local in their effect--depend on r/a; (b) short-range interac- 
tions not expressible in terms of renormalized propagators which are space 
local. Their value is determined by the hard-sphere cutoff--thus sphere 
impenetrability is important to enforce properly in this problem; (c) long- 
range interactions expressible in terms of the renormalized propagator 
which are nonlocal in space. 
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6. Calculation of the random force correlation function ( R R )  (to 
lowest order in S - i )  shows that the fluctuations are indeed small compared 
with the deterministic motion. They are described by a linear Langevin 
equation with Gaussian, but nonwhite, noise. Analyzing the fluctuations for 
arbitrary space dimension d shows that fl - a = (d - dc)/2 where dc = 2. 
For d > 2 fluctuations are small relative to the deterministic motion, for 
d < 2 the fluctuations are as important as the deterministic motion and are 
an indication that, for this dimensionality, the chosen scaling is question- 
able. 

The transport equation is found to be 

(O/~t)U(r, t) = D0(1 + 2q~)V2U- ckD[1 + (3~)1/2 + (q,/2)(5 + 3 ln3) ]U 

(ck~)2 f G3(r - r ')N(r',  t)dr' (5) + 

correct to order S -2, where G(r) = exp[-  xr]/4~rDor. The space nonlocal- 
ity of the transport equation disappears if we consider the density N(r, t) on 
a longer spatial scale l F than l, since then ]~N(r/l) can be expanded in 
gradients in powers of (l/1r) 2. The new rate coefficient so obtained is the 
old rate plus (ek~)2fdrG(r). Neglecting space gradients ( / e ~  ~ )  yields a 
pure absorption transport equation 3 N / ~ t  = - k i N .  (This regime can be 
obtained either by further coarse-graining the reaction-diffusion macro- 
scopic equation or by starting from the Langevin equation and considering 
a scaling with b >> l with l fixed now.) Experiments which only measure 
rates should be compared to this result. For example, fluorescence quench- 
ing measures just an intensity which corresponds to the pure absorption 
regime. 

3. EFFECTIVE MEDIUM THEORY 

The scaling expansion approach just described is rigorous, but difficult 
to carry out beyond low order in S - 1. If we agree to focus on length scales 
longer than the screening scale I where the nonlocal behavior is absent and 
just consider the steady-state situation we can proceed in a more conven- 
tional (but approximate) fashion. Then a calculation of E(k) can be 
expanded in k 2 to give by definition kf = E(O) and D = D O + 81) with 
6D = [d2y.(k)/dk2]~= o. Rather than express E(k) in terms of the bare 
propagator G o and sphere scattering operators { T~}, it is evident that an 
expansion in terms of a renormalized propagator such as G(k) = [Do(k 2 + 
x2)]- 1 should be carried out if a higher concentration theory is desired. One 
way of introducing this feature is via an effective medium calculation/4'5) 
In this approach an approximate memory function W (with corresponding 
propagator Gw) is added to both sides of the microscopic transport equa- 
tion and the result is written schematically as E - W = f (W).  Given some 
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W = W ( G w )  we can solve for Y,. If the choice W = Z is made then a 
self-consistent equation f ( E ) =  0 is obtained. Following this scheme we 
generated the exact  result 

0 = ( L ( 1 -  G L ) - ' ) ( ( 1  - G L ) - ' )  -~ (6) 

where L = E - ~/g= 1 T/ and T/is the sphere scattering operator for the ith 
sphere in the true medium, i.e., T~ = T;(E). Truncation of Eq. (6) is 
required: the simplest is ( L )  = 0, thus 

M 
= <T ,>(k )  (7) 

,=1 

This expression must be solved self-consistently for E (since the right-hand 
side depends on E). We have done so by numerical iteration about the 
low-concentration result E(~ = ~t~=0(2/+ 1)2/~(ka) where the {jr) are 
spherical Bessel functions. This generates all of E(k) from which kf  and D 
are obtained by k 2 expansion. Another approach is to expand Eq. (7) 
directly to obtain two equations in kf  and D which are solved self- 
consistently. As the volume fraction increases the all-wave-vector and the 
hydrodynamic approaches differ increasingly but are qualitatively the 
same. For q~ < 0.1 the effective medium calculation is in good agreement 
with the scaling expansion method. 

The calculations presented here can be extended to more sophisticated 
truncations of the effective medium identity of Eq. (6). In particular, it 
would be useful to include all scatterings among pairs of spheres in the 
effective medium. In this way, the pair distribution function of the spheres 
would enter the calculation explicitly. 

Other aspects of this reaction-diffusion system are under active inves- 
tigation. In particular we have used the radiation boundary condition in an 
effective medium calculation to explore the weakening of the diffusion 
control case all the way to the limit of no reaction. (8) Also, it is evident that 
the calculations sketched here can be used for different physical problems 
such as the viscosity of sphere suspensions (9) and thermal conductivity of 
two phase materials. 
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